Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Liang Zhang

School of Chemistry and Pharmaceutics, East China University of Science and Technology, Shanghai 200237, People's Republic of China

Correspondence e-mail:
yuliang_zhang@sohu.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.046$
$w R$ factor $=0.122$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

[N, N^{\prime}-Bis(2-oxido-1-naphthylmethylidene)-propane-1,3-diamine]manganese(II)

In the title mononuclear manganese(II) complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, the Mn atom and the central methylene group of the propanediamine fragment of the ligand lie on a mirror plane. The four-coordinate Mn atom binds to two N and two O atoms of the ligand, forming a square-planar geometry.

Comment

Manganese(II) compounds are very important in bioinorganic chemistry (Ciringh et al., 1997; Chen et al., 2003). The structure of a mononuclear manganese(II) complex, (I), is described here.

(I)

Atom Mn1 lies on a mirror plane, as does the methylene C 13 and its substituent H atoms. Mn1 is four-coordinate, binding to two N and two O atoms of the ligand in a slightly distorted square-planar geometry (Fig. 1). The $\mathrm{Mn}-\mathrm{N}$ and $\mathrm{Mn}-\mathrm{O}$ bond lengths (Table 1) are comparable with the corresponding values observed in other manganese(II) complexes (Gallo, Solari, Re et al., 1997; Gallo, Solari, Floriani et al., 1997). The bond angles subtended by cis substituents on Mn1 range from 82.17 (19) to 94.3 (2) ${ }^{\circ}$ (Table 1).

Experimental

Compound (I) was obtained by stirring propane-1,3-diamine $(1.0 \mathrm{mmol}, \quad 79.2 \mathrm{mg}), \quad$ 2-hydroxy-1-naphthaldehyde $\quad(2.0 \mathrm{mmol}$, 343.5 mg) and manganese(II) acetate tetrahydrate (1.0 mmol , 245.1 mg) in EtOH solution (80 ml). The residue was recrystallized from an EtOH solution, giving brown block-like crystals.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=435.37$
Orthorhombic, $C m c 2_{1}$
$a=30.650(1) \AA$
$b=8.464(3) \AA$
$c=7.769(1) \AA$
$V=2015.5(8) \AA^{3}$
$Z=4$
$D_{x}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation Cell parameters from 1718
reflections

$$
\theta=2.5-22.6^{\circ}
$$

$$
\mu=0.68 \mathrm{~mm}^{-1}
$$

$T=273$ (2) K
Block, brown $0.32 \times 0.28 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-

 detector diffractometer ω scansAbsorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.812, T_{\text {max }}=0.865$
5125 measured reflections

1977 independent reflections
1541 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-29 \rightarrow 38$
$k=-10 \rightarrow 10$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.122$
$S=0.97$
1977 reflections
139 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0679 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), with 849 Friedel pairs
Flack parameter: -0.08 (4)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{O} 1$	$1.842(3)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$1.867(4)$
O1 $^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1$	$82.17(19)$	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$91.75(15)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	$173.75(14)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$94.3(2)$ l

Symmetry code: (i) $-x, y, z$.
All H atoms were constrained to their ideal geometries, with $\mathrm{C}-\mathrm{H}$ $=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figure 1
The structure of (I), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operator $(-x, y, z)$.

This work was mainly supported by Doctor Research Grants of the East China University of Science and Technology (ECUST) (No. YJ0142119).

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, C., Huang, D., Zhang, X., Chen, F., Zhu, H., Liu, Q., Zhang, C., Liao, D., Li, L. \& Sun, L. (2003). Inorg. Chem. 42, 3540-3548.
Ciringh, Y., Gordon-Wylie, S. W., Norman, R. E., Clark, G. R., Weintraub, S. T. \& Horwitz, C. P. (1997). Inorg. Chem. 36, 4968-4982.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gallo, E., Solari, E., Floriani, C., Chiesi-Villa, A. \& Rizzoli, C. (1997). Inorg. Chem. 36, 2178-2186.
Gallo, E., Solari, E., Re, N., Floriani, C., Chiesi-Villa, A. \& Rizzoli, C. (1997). J. Am. Chem. Soc. 119, 5144-5154.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

